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1 Introduction

The relation between the different regimes of physics and the values of the fundamental
constants c,G and ~ is frequently displayed in a cube like the one shown shown in figure 1.
This paper is about the corner of this cube where G and ~ have their physical values, but
c =∞. The corresponding physical regime is non-relativistic or Galilean quantum gravity,
which has not received much attention in the literature (but see [1] for a comprehensive
recent study and further references). Here we investigate this regime in a universe with
two space and one time dimension. We construct a diffeomorphism invariant theory of
Galilean gravity in this setting, and show how to quantise it. One motivation for this
paper is to demonstrate that this can be done at all. A related motivation comes from
a curiosity about the dependence of some of the conceptual and technical problems of
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Figure 1: A cube showing the different regimes of physics, based on values of the constants
c,G and ~.

quantum gravity on the speed of light. One aspect of this dependence is that Galilean
gravity sits between Euclidean and Lorentzian gravity, and is therefore a good place to
study the relation between the two. In the context of three-dimensional gravity, where the
relative difficulty of Lorentzian to Euclidean signature is related to the non-compactness
of the Lorentz group versus the compactness of the rotation group, Galilean gravity may
provide a useful intermediate ground, with non-compact but commuting boost generators.

It is part of the lore of three-dimensional gravity that the Newtonian limit is trivial. If
one considers the geodesic equation for a test particle in 2+1 dimensional gravity and takes
the Newtonian limit in the usual way one indeed finds that there are no Newtonian forces
on such a test particle [2]. However, this does not mean that the theory becomes trivial in
the Galilean limit c → ∞. Gravity in 2+1 dimensions has topological degrees of freedom
associated with the topology of spacetime, and topological interactions between particles.
An example of the latter is a deflection of a test particle in the metric of a massive particle
by an amount which is related to the mass of the latter. Such interactions should survive
the Galilean limit.

The question is how to capture topological interactions as c→∞. Here we approach
this problem from the point of view of the Chern-Simons formulation of 2+1 dimensional
gravity. In this formulation the isometry group of a model spacetime (which depends on
the signature and the value of the cosmological constant) is promoted from global to local
symmetry. In the case of Lorentzian signature and vanishing cosmological constant, gravity
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is thus formulated as a gauge theory of the Poincaré group. One might therefore attempt to
take the Galilean limit by replacing the Poincaré group with the Galilei group. However,
this naive strategy fails since the invariant inner product on the Poincaré Lie algebra,
which is essential for writing down the Chern-Simons action, does not have a good limit as
c → ∞. In fact, as we shall explain in this paper, the Lie algebra of the Galilei group in
2+1 dimensions does not possess an invariant (and non-degenerate) inner product.

In order to obtain a group of Galilean symmetries with an invariant inner product on its
Lie algebra we consider central extensions of the Galilei group in two spatial dimensions.
Such extensions are ubiquitous in the theoretical description of Galilei-invariant planar
systems. One simple reason why central extensions are required to capture all of the
physics when taking the Galilean limit is that the proportionality between rest mass and
rest energy of relativistic physics is lost when c→∞. Thus, two independent generators are
needed to account for mass and rest or ’internal’ energy in this limit. In 3+1 dimensions,
the Galilei group has only one non-trivial central extension, which is related to the mass.

In 2+1 dimensions, the Lie algebra of the Galilei group has three distinct central
extensions [3–5] and the Galilei group itself has two [6–8]. In the application to non-
relativistic particles, one of the central generators is related to the particle’s mass and a
second ’exotic’ extension can be related to the non-commutativity of (suitably defined)
position coordinates of the particle [9–12] but also to the particle’s spin [8, 13–15]. There
is considerable discussion in the literature regarding this interpretation in general and in
specific models, which we shall not try to summarise here (but see e.g. [16, 17]). In this
paper we adopt the spin interpretation in our notation and terminology. In particular,
in our formalism the spin parameter is naturally paired with the mass parameter, making
manifest an analogy between mass and spin which was stressed in [14]. Non-commutativity
of position coordinates plays a role at the very end of our paper; even though the algebraic
structure we obtain is similar to the one discussed in [9], the interpretation is different
since our non-commutativity is controlled by universal parameters like ~ and G, and not
by parameters characterising an individual particle. The third central extension of the Lie
algebra does not exponentiate to the Galilei group and does not appear to have a clear
physical interpretation [5]; it plays no role in this paper.

Here we show that the two-fold central extensions of the Galilei group arises naturally
in a framework for taking the Galilean limit which automatically preserves the invariant
inner product on the Lie algebra of the Poincaré group or, more generally, on the isometry
group for the relevant value of the cosmological constant. The invariant product and the
associated structures do not appear to have been studied in the literature. As a by-product
of working in a wider context, we obtain central extensions with invariant inner products of
the so-called Newton-Hooke groups [18, 19], which are symmetries of Galilean spacetimes
with a cosmological constant. Using the inner products on the Lie algebras, one can write
down Chern-Simons actions for the extended Galilei and Newton-Hooke groups. In this
paper we focus on the case of vanishing cosmological constant. The Chern-Simons theory
for the centrally extended Galilei group with its invariant inner product is our model for
classical Galilean gravity in 2+1 dimensions. As far as we are aware, this is the first
formulation of a diffeomorphism-invariant theory of Galilean gravity in 2+1 dimensions.
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Interestingly, our Chern-Simons model for Galilean gravity in 2+1 dimensions turns out to
be closely related to the gauge formulation of (1+1)-dimensional (or lineal) gravity [20].

The two-fold central extensions of the Galilei group and the Newton-Hooke groups all
have a special property, which considerably facilitates the quantisation of the associated
Chern-Simons theory: equipped with their invariant inner product, the Lie algebras of these
symmetry groups all have the structure of a classical double. The double structure of the
two-fold central extension of the Galilei group has a particularly simple form. The group
structure is that of a semi-direct product. The homogeneous part is a central extension of
the homogeneous Galilei group (the group of rotations and Galilean boosts in two spatial
dimensions), which has played a role in the context of lineal gravity [20] and in the string
theory literature, where it is often called Nappi-Witten group [21, 22]. The inhomogeneous
(normal, abelian) part is also four-dimensional, and in duality with the Lie algebra of the
homogeneous group via the invariant inner product on the Lie algebra. This is precisely
the Lie-algebraic data of a classical double. Moreover, classical doubles also have a Lie
co-algebra structure, which can be expressed entirely in terms of a classical r-matrix.
The r-matrix endows the two-fold extension of the Galilei group (and its Newton-Hooke
relatives) with the structure of a Poisson-Lie group. In the context of this paper, the
existence of the classical r-matrix is important because it allows us to quantise the Chern-
Simons formulation of Galilean gravity via the so-called Hamiltonian or combinatorial
quantisation method [23–26].

The starting point of the combinatorial quantisation method is the construction of the
Hopf algebra or quantum group which quantises the Poisson-Lie structure defined via the
given r-matrix. The Hilbert space of the quantum theory as well as the action of observables
and of large diffeomorphisms are then constructed in terms of the representation theory of
that quantum group. In the current context, the relevant quantum group is the quantum
double of the centrally extended homogeneous Galilei group, which we call the Galilei
double. This quantum group is a non-co-commutative deformation of the two-fold extension
of the Galilei group. In this paper we do not go through all the details of the combinatorial
quantisation programme, referring the reader instead to the papers listed above and the
papers [27–31] discussing its application to three-dimensional gravity. We do, however,
study the Galilei double and its representation theory, and interpret some of its features
in terms of Galilean quantum gravity. In particular, we show that the non-commutative
addition of momenta in Galilean quantum gravity is captured by the representation ring
of the quantum double, and that distance-independent, topological interactions between
massive particles can be described in terms of a braid-group representation associated to
the quantum double. Exploiting a generic link between non-abelian momentum manifolds
and non-commutative position coordinates, we briefly comment on the non-commutative
Galilean spacetime associated to the the Galilei double.

The paper is organised as follows. In section 2 we describe a unified and, to our
knowledge, new framework for studying the model spacetimes of three-dimensional gravity,
their isometry groups and the inner products on the corresponding Lie algebras. We use
the language of Clifford algebras to obtain the two-fold extension of the Galilei Lie algebra,
with its inner product, as a contraction limit of a trivial two-fold extension of the Poincaré
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Lie algebra. While the contraction procedure for the Lie algebras is well-known [8], the
Clifford language clarifies the origin of the central extensions and naturally provides the
inner product. Similarly, we obtain the two-fold extensions of the Newton-Hooke Lie
algebras as contractions of trivial central extensions of the de Sitter and anti-de Sitter Lie
algebras. Section 3 contains a brief review of Galilean spacetimes and a detailed account
of the doubly extended Galilei group. We explain its relation to the Nappi-Witten group,
and review conjugacy classes of the latter. These conjugacy classes, already studied in [22],
play an important role in many calculations in this paper. In particular, we show how
to deduce coadjoint orbits of the full doubly extended Galilei group from them. These
orbits, equipped with a canonical symplectic structure (which we compute), are physically
interpreted as phase spaces of non-relativistic particles, possibly with spin. In section 4
we introduce the Chern-Simons theory of the doubly extended Galilei group as our model
for classical Galilean gravity. We explain how to incorporate point particles by minimal
coupling of the Chern-Simons actions to coadjoint orbits of the previous section. The
phase space of the theory is the space of flat connections, and can be parametrised in
terms of holonomies around non-contractible paths. We exhibit the classical r-matrix of the
doubly extended Galilei group, and briefly explain how this r-matrix determines the Poisson
structure of the phase space in the formalism of Fock and Rosly [23]. Finally, section 5 is
devoted to the quantisation of Galilean gravity. We explain the role of the Galilei double
in the quantisation and study its representation theory. We show how the associated braid
group representation captures topological interactions between massive particles in Galilean
quantum gravity, and write down the non-commutative Galilean spacetime associated to
the Galilei double.

2 A unified geometrical framework for 3d gravity

The vacuum solutions of the Einstein equations in three dimensions are locally isometric
to model spacetimes which depend on the signature of spacetime and on the value of the
cosmological constant. As we shall explain below, each of the model spacetimes can be
realised as a hypersurface in a four-dimensional embedding space with a constant metric.
It turns out that these four-dimensional geometries and their Clifford algebras provide a
unifying framework for discussing the isometry groups of the model spacetimes arising in
3d gravity. In particular, the possible invariant bilinear forms on the model spacetimes are
naturally associated to the central elements in the even part of the Clifford algebra. For
us this framework is valuable because it allows us to take the Galilean limit in such a way
that we retain a non-degenerate invariant bilinear form. The resulting version of the Galilei
group is naturally a two-fold central extension of the Galilei group in 2+1 dimensions.

We will use Greek indices µ, ν, . . . for the range {0, 1, 2, 3} and roman indices a, b, c, . . .
for {0, 1, 2}. Our convention for the spacetime metric in three dimension is ηab =
diag(−c2, 1, 1). We will mostly be interested in the Lorentzian case, but the Euclidean
case can be included by allowing imaginary values for c. Purely spatial indices will be de-
noted by Roman letters in the middle of the alphabet i, j, k . . . ∈ {1, 2}. The cosmological
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constant is denoted Λ here (but note that in some papers on 3d gravity, Λ stands for minus
the cosmological constant in the Lorentzian case [33, 34]).

2.1 Embedding spaces, Clifford algebras and symmetries

Consider a four-dimensional auxiliary inner product space (V, g) with metric

gµν = diag
(
−c2, 1, 1,

1
Λ

)
. (2.1)

We can define model spacetimes as embedded hypersurfaces

Hc,Λ =
{

(t, x, y, w) ∈ R4| − c2t2 + x2 + y2 +
1
Λ
w2 =

1
Λ

}
. (2.2)

For finite c this gives the three-sphere S3 (c2 < 0, Λ > 0), hyperbolic space H3 (c2 < 0,
Λ < 0), de Sitter space dS3 (c2 > 0, Λ > 0) and anti-de Sitter space AdS3 (c2 > 0,
Λ < 0). Euclidean space E3 and Minkowski M3 space arise in the limit Λ→ 0, which one
should take after multiplying the defining equation in (2.2) by Λ. In all cases the metric
is induced by the embedding and has scalar curvature equal to Λ (so that 1/

√
|Λ| is the

curvature radius).
We are interested in the limits c → ∞ and Λ → 0, or some combination thereof. In

those limits, the inverse metric

gµν = diag
(
− 1
c2
, 1, 1,Λ

)
(2.3)

degenerates but remains well-defined as a matrix. In studying the associated Clifford
algebra (initially for finite c and non-zero Λ), we therefore work with the inverse metric
and define generators γµ via

{γµ, γν} = −2gµν . (2.4)

Lie algebra generators of the symmetry group SO(V ) of (2.3) can be realised as degree
two elements in Clifford algebra

Mµν =
1
4

[γµ, γν ], (2.5)

giving six generators, M12 = 1
2γ

1γ2 etc. with commutation relations

[Mκλ,Mµν ] = gκµMλν + gλνMκµ − gκνMλµ − gλµMκν . (2.6)

We also write 1 for the identity element in the Clifford algebra, and define the vol-
ume element

γ5 = γ0γ1γ2γ3. (2.7)

Then the linear span of the even powers Clifford of the Clifford generators

A =
[
1, γ5,Mµν

]
µ,ν=0,...3

(2.8)
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is an algebra with multiplication defined by the Clifford multiplication. The elements 1
and γ5 are central elements. Note that the element γ5 satisfies

(γ5)2 = −Λ
c2

= det(gµν) (2.9)

and acts on A by Clifford multiplication. As a Lie algebra with brackets defined by com-
mutators, A is a trivial two-dimensional extension of the Lie algebra so(V ).

The elements 1 and γ5 are, up to scale, the unique elements of, respectively, degree 1
and 4 in A. Having chosen them, we can define maps

Π1,Π5 : A→ R, (2.10)

which pick out, respectively, the coefficients of 1 and γ5 in the expansion of an arbitrary
element in A in any basis containing 1, γ5 and otherwise only degree two elements. Then
we can define bilinear forms on A via

〈M,N〉 = −4Π5(MN), (2.11)

and

(M,N) = −4Π1(MN), (2.12)

It follows immediately from the centrality of 1 and γ5 that these bilinear forms are invariant
under the conjugation action of the spin group Sp(V ) (which is realised as a subset of A).
Explicitly, the pairing 〈 , 〉 is non-zero whenever the indices on the basis vectors are
complementary:

〈M12,M03〉 = −1, 〈1, γ5〉 = −4, 〈M12,M01〉 = 0 etc.

By contrast, the pairing ( , ) of basis vectors is non-zero whenever the indices on the basis
vectors match:

(M12,M12) = 1, (M01,M01) = − 1
c2
, (M13,M13) = Λ etc.

The bilinear form ( , ) is the restriction to even elements of the usual inner product on
the Clifford algebra of (V, gµν), induced from the inner product gµν of degree one elements.
Not surprisingly this form degenerates in both the limits c → ∞ and Λ → 0. The inner
product 〈 , 〉, by contrast, remains non-degenerate even when the metric gµν degenerates.
One can also think of it of the Berezin integral in the Grassmann algebra generated by
the γµ. The Grassmann algebra is isomorphic to the Clifford algebra as a vector space,
but clearly independent of the metric gµν . The minus signs and factors in our definition
of 〈 , 〉 and ( , ) are designed to match conventions elsewhere in the literature. The
physical dimensions of the pairings follow directly from the definition: the pairing 〈 , 〉 has
dimensions of the inverse of γ5 i.e length2/time while the pairing ( , ) is dimensionless.

– 7 –
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2.2 The 2+1 dimensional point of view

Next we switch notation to one that brings out the spacetime interpretation of the Lie al-
gebra (2.6). We define the three-dimensional totally antisymmetric tensor with downstairs
indices via ε012 = 1. Note that

εabc = − 1
c2
εabc (2.13)

and that therefore

εabdε
aef = − 1

c2

(
δebδ

f
d − δ

e
dδ
f
b

)
, εabcε

dbc = − 2
c2
δda. (2.14)

Then define

Ja =
1
2
εabcM

bc, P a = Ma3, (2.15)

and note that these definitions are independent of the metric gµν . The Lie algebra brackets
take the form

[Ja, Jb] = εabcJ
c, [Ja, P b] = ε b

a cP
c, [P a, P b] = −c2ΛεabcJc. (2.16)

Because of the identity (2.13), the right hand side of the last commutator is actually
independent of c. As result, there is no mathematical difficulty in taking the Galilean
limit c→∞ for the Lie algebra in terms of the generators Ja (indices downstairs) and P a

(indices upstairs). However, this would not produce the Galilei Lie algebra. To see this,
we need to study the physical interpretation of the various generators. First we note the
physical dimensions of the generators with indices upstairs and downstairs:

J0: dimensionless, J0: 1 /velocity2, Ji = J i: 1/velocity
P0: 1/time, P 0: time/length2, Pi = P i: 1/length.

The Lie algebra with generators J0, J1, J2 contracts to the algebra of rotations and
Galilean boosts in the limit c → ∞. However, since ε 0

i j → 0 as c → ∞, the brackets
between P 0 and the Ji tends to zero in this limit; if P 0 were a time translation generator
in the Galilean limit, then this bracket should give a spatial translation. Thus P 0 cannot
be interpreted as a time translation generator, but P0 can (this is confirmed by dimensional
analysis). Thus, in order to take the Galilean limit we need to write the Lie brackets in
terms of Pa, with lowered indices.

The brackets now read

[Ja, Jb] = εabcJ
c, [Ja, Pb] = εabcP

c, [Pa, Pb] = −c2ΛεabcJc, (2.17)

which is the usual way of writing down the algebra of spacetime symmetry generators in
3d gravity. The pairings are

〈Ja, Pb〉 = −ηab (2.18)

or, explicitly,

〈J0, P0〉 = c2, 〈Ji, Pj〉 = −δij (2.19)
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and

(Ja, Jb) = − 1
c2
ηab, (Pa, Pb) = Ληab, (2.20)

which is the same as

(J0, J0) = 1, (Ji, Jj) = − 1
c2
δij , (P0, P0) = −c2Λ, (Pi, Pj) = Λδij . (2.21)

Both these pairings have potential infinities in the limit c → ∞, and the pairing ( , ) has
the additional problem of some entries becoming zero. In the next section we shall see that,
by a suitable re-definition of generators in the bigger algebra A, the pairing 〈 , 〉 remains
well-defined and non-degenerate in the Galilean limit.

2.3 The Galilean limit

As explained in the introduction, the difficulties of taking the Galilean limit can be seen
easily in terms of the mass-energy relation. In relativistic physics, mass and energy are
proportional to each other, but the constant of proportionality tends to infinity in the
Galilean limit. Thus, in order to retain generators representing mass and energy we expect
the need for some kind of renormalisation when taking the speed of light to infinity.

To make contact with the conventions used in Galilean physics we first rename our
generators, using the two-dimensional epsilon symbol with non-zero entries ε12 = −ε21 = 1:

J̃ = −J0, Ki = −εijJj , H̃ = −P0. (2.22)

The generator Ki, i = 1, 2, generate boosts in the i-th spatial direction and we will mostly
use them rather than the Ji when discussing Galilean physics. Then the algebra (2.16) reads

[Ki,Kj ] = εij
1
c2
J̃ , [Ki, J̃ ] = εijKj

[Ki, Pj ] = δij
1
c2
H̃, [Ki, H̃] = Pi, [Pi, J̃ ] = εijPj

[Pi, Pj ] = −εijΛJ̃ , [H̃, Pi] = −c2ΛKi. (2.23)

Now we rescale and rename the central elements in the algebra A

S =
1

2c2
1, M =

1
2
γ5. (2.24)

As anticipated, in taking limit c→∞ we need to renormalise the energy H̃ and the angular
momentum J̃ in such a way that P 0 = H̃/c2 (the rest mass) and J0 = J̃/c2 (a kind of rest
spin [14]) remain finite. We do this by defining

H = H̃ − c2M, J = J̃ − c2S. (2.25)

With this substitution, the algebra (2.23) still does not have a good limit if we take c→∞
while keeping Λ constant. The problem is the appearance of c2 in the last line of (2.23).
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If, on the other hand we let c→∞ and Λ→ 0 in such a way that λ = −c2Λ remains fixed
we obtain a good limit:

[Ki,Kj ] = εijS [Ki, J ] = εijKj

[Ki, Pj ] = δijM, [Ki, H] = Pi, [Pi, J ] = εijPj

[Pi, Pj ] = εijλS, [H,Pi] = λKi. (2.26)

This is a centrally extended version of the so-called Newton-Hooke algebra, which describes
Galilean physics with a cosmological constant λ [19].

Since our re-definition of generators did not rescale the Ji it is clear that the pairing
( , ) degenerates in the limit c→∞. By contrast, the pairing 〈 , 〉 remains non-degenerate
in the Galilean limit. Using

〈S,M〉 = − 1
c2
, 〈H̃, J̃〉 = c2, (2.27)

we deduce

〈H,S〉 = 1, 〈M,J〉 = 1, 〈Ki, Pj〉 = εij , (2.28)

or, equivalently,

〈H,S〉 = 1, 〈M,J〉 = 1, 〈Ji, Pj〉 = −δij , (2.29)

which is an invariant inner product on the Newton-Hooke algebra, and manifestly inde-
pendent of λ. The associated quadratic Casimir, which we will need later in this paper, is

C2 = H ⊗ S + S ⊗H +M ⊗ J + J ⊗M − (~Ji ⊗ ~Pi + ~Pi ⊗ ~Ji). (2.30)

Before we proceed it is worth recording the physical dimension of all the quantities
introduced so far. For the generators we have the analogue of (2.2):

J : dimensionless, S: 1 /velocity2, Ji = J i: 1/velocity
H: 1/time, M : time/length2, Pi = P i: 1/length.

It follows that the pairing 〈 , 〉 is also dimensionful with dimension length2/time.
Finally, the dimension of λ is 1/time2, so that it parametrises some kind of curvature
in time.

The smallest Lie subalgebra of (2.26) containing boosts and rotations is the Lie algebra
with generators J,K1,K2, S and brackets

[K1,K2] = S [Ki, J ] = εijKj (2.31)

or, in terms of Ji = εijKj ,

[J1, J2] = S [Ji, J ] = εijJj . (2.32)

This Lie algebra can be viewed as a central extension of the Lie algebra of the Euclidean
group in two dimensions, or as the Heisenberg algebra with an outer automorphism J . In
the string theory literature it is sometimes called the Nappi-Witten Lie algebra [21, 22]. In
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the context of this paper it should be interpreted as central extension of the homogeneous
part of the Galilei Lie algebra, so we denote it by ĝ0. This algebra also has an invariant
inner product (of Lorentzian signature!) with non-zero pairings in the above basis given by

〈J, S〉ĝ0
= 1, 〈Ji, Jj〉ĝ0

= −δij . (2.33)

Note that we also have 〈Ki,Kj〉ĝ0
= −δij .

One can view the Lie algebra (2.26) as a ’generalised complexification’ of the homoge-
neous algebra ĝ0. This viewpoint has proved useful in the context of (relativistic) three-
dimensional gravity, where it was introduced for vanishing cosmological constant in [32],
generalised to arbitrary values of the cosmological constant in [33] and further developed
in [34]. We will often adopt it in the current paper since it provides the most efficient
method for explicit calculations in many cases. The idea, explained in detail in [33], is
to work with a formal parameter θ that satisfies θ2 = λ and to work over the ring of
numbers of the form a + θb, with a, b ∈ R. The formal parameter θ is a generalisation of
the imaginary unit i since it square may be negative (ordinary complex numbers), posi-
tive (hyperbolic numbers) or zero (dual numbers). In this formulation, we recover (2.26)
from (2.32) by setting H = θJ, Pi = θJi and M = θS. The inner product 〈 , 〉 (2.28) is
then the ’imaginary part’ (linear in θ) of the linearly extended inner product 〈 , 〉ĝ0

(2.33).
In this paper we will concentrate on the limiting situation where λ = 0. In this limit

we obtain a two-fold extension of the Galilei Lie algebra, which we denote ĝ:

[Ki,Kj ] = εijS [Ki, J ] = εijKj

[Ki, Pj ] = δijM, [Ki, H] = Pi, [Pi, J ] = εijPj

[Pi, Pj ] = 0, [H,Pi] = 0. (2.34)

The associated two-fold central extension of the Galilei group, its coadjoint orbits and
irreducible representations (irreps) have been studied extensively [3, 4, 8, 15]. In the next
section we need to revisit some of those results in a language that, amongst others, makes
use of the formal parameter θ and of the inner product (2.28). This language is designed
to ease the deformation of the extended Galilei group to the Galilei quantum double in
section 5.

3 The centrally extended Galilei group in two dimensions, its Lie algebra

and coadjoint orbits

3.1 Galilean spacetime and symmetry

The geometrical structure of Galilean spacetimes is discussed in a number of textbooks. We
base our discussion on the treatment in [35]. Thus a (2+1)-dimensional Galilean spacetime
is a three-dimensional affine space A3, with an affine map

t : A3 → R, (3.1)

which assigns to every event an absolute time. After a choice of origin we can identify A3

with a three-dimensional vector space V 3. With the standard choice of origin for R, the
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map t then defines a linear map V 3 → R, which we denote by t again. The kernel of this
map is the space of simultaneous events. It is a two-dimensional Euclidean vector space.
We will pick a basis for V 3 consisting of a vector e0 which is normalised via t(e0) = 1
and orthonormal vectors e1, e2 in the kernel of t. Then we can describe events in terms of
coordinates t, x1, x2 relative to this basis, and identify V 3 with R3 (we have re-interpreted
the map t as a coordinate here, but this should not lead to confusion).

In discussing R2 with its standard metric we write vectors as ~a,~b . . . and ε for the
matrix with elements εij i.e.

ε =

(
0 1
−1 0

)
. (3.2)

We use the Einstein summation convention for the trivial metric δij and introduce
the abbreviations

~a×~b = aiεijbj , ~a ·~b = aibi ~a2 = ~a · ~a. (3.3)

The orthochronous Galilei group is, by definition, the group of affine maps A3 → A3

which preserves t and the Euclidean structure on the space of simultaneous events. We will
mainly be interested in the identity component G↑+ of the orthochronous Galilei group and
its universal cover G̃↑+, where we used the notation from [3]. Then G↑+ consists of time- and
space translations, spatial rotations and Galilean boosts. Parametrising time- and space
translation in terms of (α,~a) ∈ R3, rotations in terms of ϕ ∈ [0, 2π) and boosts in terms of
velocity vectors ~v ∈ R2, we identify G↑+ = (SO(2) n R2) n R3 , write elements in the form
(ϕ,~v;α,~a) and obtain the group multiplication law

(ϕ1, ~v1;α1,~a1)(ϕ2, ~v2;α2,~a2) = (ϕ1 + ϕ2, R(ϕ1)~v2 + ~v1;α1 + α2,~a1 +R(ϕ1)~a2 + α2~v1)
(3.4)

with

R(ϕ) =

(
cosϕ sinϕ
− sinϕ cosϕ

)
. (3.5)

The action of the Galilei group on A3 can be expressed in terms of the coordinate vector
(t, ~x) ∈ R3 as follows:

(ϕ,~v;α,~a) : (t, ~x) 7→ (t+ α,R(ϕ)~x+ ~vt+ ~a). (3.6)

The Lie algebra g of G↑+ is conventionally described in terms of a rotation generator
J , boost generators K1,K2 and time- and space translation generators H,P1, P2. The
non-vanishing brackets are

[Ki, H] = Pi [Pi, J ] = εijPj [Ki, J ] = εijKj . (3.7)

It is easy to check that Pi⊗Pi and εij(Pi⊗Kj −Ki⊗Pj) are both central elements in the
universal enveloping algebra U(g) and that no linear combination of them is invertible i.e.

– 12 –



J
H
E
P
1
1
(
2
0
0
9
)
0
0
9

associated to an inner product on g. Since the dimension of the centre of U(g) is bounded by
the rank of g, we conclude that the Lie algebra g cannot have an invariant, non-degenerate
inner product. If it did, the associated Casimir would provide a third element of the centre
of U(g), contradicting rk(g) = 2.

As reviewed in the Introduction, the Galilei algebra (3.7), admits three central exten-
sions - one for each two-cocycle in the Lie algebra cohomology [3, 4]. The two-fold central
extension ĝ (2.34) we constructed via contraction in the previous section is the maximal
extension of the Lie algebra that can be exponentiated to the Galilei group. We now in-
troduce a formulation of this extension as a classical double which is particularly suitable
for our purposes.

3.2 The centrally extended homogeneous Galilei group

The centrally extended homogeneous Galilei group Ĝ0 is a Lie group whose Lie algebra is
the Lie algebra ĝ0. As a manifold it is S1 × R3. Group elements can be parametrised in
terms of tuples

(ϕ, ~w, ζ), ϕ ∈ [0, 2π), ~w ∈ R2, ζ ∈ R, (3.8)

which we we can identify with exponentials of the abstract generators via

(ϕ, ~w, ζ)↔ exp(~w · ~J) exp(ζS) exp(ϕJ). (3.9)

The group composition law is given in [22] in complex notation and with slightly
different conventions from ours (their generator J is the negative of ours, and the inner
product is also the negative of ours). We choose conventions which allow us to make contact
with the papers [4] and [3] on the Galilean group and its central extension. Using vector
notation, the composition law can be written as

(ϕ1, ~w1, ζ1)(ϕ2, ~w2, ζ2) = (ϕ1 + ϕ2, ~w1 +R(ϕ1)~w2, ζ), (3.10)

where R(ϕ) is an SO(2) matrix given in (3.5) and

ζ = ζ1 + ζ2 +
1
2
~w1 ×R(ϕ1)~w2. (3.11)

The inverse is

(ϕ, ~w, ζ)−1 = (−ϕ,−R−1(ϕ)~w,−ζ). (3.12)

The formula for group conjugation in the group Ĝ0 plays a fundamental role in what
follows. By explicit calculation, or by translating the result of [22] into our notation, one
finds, in terms of

v = (ϕ, ~w, ζ), v0 = (ϕ0, ~w0, ζ0), (3.13)

that

Adv(v0) =
(
ϕ0, (1−R(ϕ0))~w +R(ϕ)~w0, ζ0 +

1
2

(1 +R(ϕ0))~w ×R(ϕ)~w0 +
1
2

sinϕ0 ~w
2

)
.

(3.14)
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We can obtain adjoint orbits by keeping only linear terms in ϕ0, ~w0, ζ0, and using R(ϕ0) ≈
1 + εϕ0 for small ϕ0. Writing

ξ = αJ + ~a · ~J + τS, (3.15)

and with the convention

~v = −ε~w (so that ~v · ~K = ~w · ~J) (3.16)

one finds

Adv(ξ) = αJ + ~a′ · ~J + τ ′S, (3.17)

with

~a′ = R(ϕ)~a+ α~v

τ ′ = τ + ~v ·R(ϕ)~a+
1
2
α~v2. (3.18)

3.3 The centrally extended Galilei group

For the calculations in the rest of the paper, we need an explicit definition and description
of the centrally extended Galilei group, whose Lie algebra is ĝ. We are going to base
our formulation on the observation that the Lie algebra ĝ is a ’complexification’ of the
Lie algebra ĝ0 in the sense defined at the end of section 2.3. Thus we work with formal
parameter θ which satisfies θ2 = 0, and use the notation (3.8) with entries of the form
a+ θb, with a and b real. We denote the two-fold central extension of the Galilei group by
Ĝ, and write elements in the form

(ϕ+ θα, ~w + θ~a, ζ + θτ), α, τ ∈ R,~a ∈ R2, (3.19)

with ranges for ϕ, ~w, ζ as defined in (3.8). The element (3.19) can be identified with

exp(~w · ~J + ~a · ~P ) exp(ζS + τM) exp(ϕJ + αH). (3.20)

This ’complexified’ notation turns out be the most efficient for calculations. We use

R(ϕ+ θα) = R(ϕ)(1 + εθα). (3.21)

as well as (3.16) to compute the multiplication rule from the multiplication rule for Ĝ0:

(ϕ1 + θα1, ~w1 + θ~a1, ζ1 + θτ1)(ϕ2 + θα2, ~w2 + θ~a2, ζ2 + θτ2) (3.22)

= (ϕ1 + ϕ2 + θ(α1 + α2), ~w1 +R(ϕ1) ~w2 + θ(~a1 +R(ϕ1)~a2 − α1~v2), ζ + θτ),

where ζ is given as in (3.11), and

τ = τ1 + τ2 +
1
2

(~a1 ×R(ϕ1)~w2 + ~w1 ×R(ϕ1)~a2 − α1 ~w1 ·R(ϕ1)~w2)

= τ1 + τ2 +
1
2

(−~a1 ·R(ϕ1)~v2 + ~v1 ·R(ϕ1)~a2 − α1~v1 ·R(ϕ1)~v2). (3.23)
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In studying the representation theory of Ĝ we will exploit the fact that Ĝ is a semi-
direct product

Ĝ = Ĝ0 n R4. (3.24)

To make this manifest we write elements in factorised form

g = xv, with x = (θα, θ~a, θτ̃), v = (ϕ, ~w, ζ), (3.25)

where we used the notation (3.19) for both elements. Note that purely inhomogeneous
elements x of the group have ’purely imaginary’ parameters θα etc. . . The factorised form
can be related to the complex parametrisation (3.19) by multiplying out

(θα, θ~a, θτ̃)(ϕ, ~w, ζ) = (ϕ+ θα, ~w + θ(~a− α~v), ζ + θτ), (3.26)

where

τ = τ̃ +
1
2
~a× ~w = τ̃ − 1

2
~a · ~v. (3.27)

Using (3.18) one obtains the following multiplication law in the semi-direct prod-
uct formulation

(θα1, θ~a1, θτ̃1)(ϕ1, ~w1, ζ1)(θα2, θ~a2, θτ̃2)(ϕ2, ~w2, ζ2)

= (θ(α1 + α2), θ(~a1 +R(ϕ1)~a2 + α2 ~v1), θτ̃)(ϕ1 + ϕ2, ~w1 +R(ϕ1)~w2, ζ), (3.28)

where ζ is again given by (3.11) and

τ̃ = τ̃1 + τ̃2 + ~v1 ·R(ϕ1)~a2 + 1
2α2~v

2
1. (3.29)

Neither the ’complexified’ nor the semi-direct product description of Ĝ coincide with the
parametrisation of the two-fold central extension of Galilei group most commonly used in
the literature. To make contact with, for example, the parametrisation in [4] we factorise
Ĝ elements in the form

(θα,~0, 0)(ϕ, ~w + θ~a, ζ + θτ) = (ϕ+ θα, ~w + θ(~a− α~v), ζ + θτ). (3.30)

This almost agrees with the semi-direct product parametrisation (3.25), except for the
shift (3.27). The group multiplication rule in the parametrisation (3.30) is

(θα1,~0, 0)(ϕ1, ~w1 + θ~a1, ζ1 + θτ1)(θα2,~0, 0)(ϕ2, ~w2 + θ~a2, ζ2 + θτ2) (3.31)

=
(
θ(α1 + α2),~0, 0

)(
(ϕ1 + ϕ2), ~w1 +R(ϕ1)~w2 + θ(~a1 +R(ϕ1)~a2 + α2~v1), ζ + θτ

)
,

where ζ is again (3.11) and

τ = τ1 + τ2 +
1
2

(~a1 ×R(ϕ1)~w2 + ~w2 ×R(ϕ1)~a2 + α2~v1 × ~w2)

= τ1 + τ2 −
1
2

(~a1 ·R(ϕ1)~v2 − ~v1 ·R(ϕ1)~a2 + α2~v1 ·R(ϕ1)~v2). (3.32)

This matches the conventions used for the centrally extended Galilei group in [4] up to a
sign τ → −τ .
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3.4 Coadjoint orbits as adjoint orbits and the phase spaces of Galilean parti-
cles

The coadjoint orbits of the centrally extended Galilei group Ĝ were studied in detail in [8,
15]. For our purposes it is essential to identify the coadjoint orbits with adjoint orbits,
using the inner product (2.29). In that way, we will be able to make contact with the
group conjugacy classes which play an important role later in this paper. Thus we identify
the generic element in the dual of the Lie algebra

Q∗ = mM∗ + EH∗ + jJ∗ + sS∗ + ~p · ~P ∗ +~j · ~J∗ (3.33)

with the Lie algebra element

Q = mJ + ES + jM + sH − ~p · ~J −~j · ~P . (3.34)

In order to describe adjoint orbits explicitly, we pick a reference point Q0 in ĝ, and write
a generic point in the orbit as

Q = Adg(Q0), (3.35)

where we parametrise g ∈ Ĝ as is customary in the literature referring to the Galilei
group (3.30):

g = (θα,~0, 0)(ϕ, ~w + θ~a, ζ + θτ) = (ϕ+ θα, ~w + θ(~a− α~v), ζ + θτ). (3.36)

Before we carry out the computation we should clarify the physical interpretation of
the various parameters we have introduced. A coadjoint orbit of the Galilei group (or
its central extension) can be interpreted as the phase space of a Galilean particle. The
coordinates on the phase space parametrise the states of motion of such a particle. A full
justification of the interpretation requires Poisson structure of the phase space, which is
discussed in the literature [8, 15] and which we review in section 3.5. However, we give the
physical picture here so that we can interpret the formulae we derive as we go along.

The vectors ~p and ~j are the particle’s momentum and impact vector (the quantity
which is conserved because of invariance under Galilei boosts). The parameters m and s

are the mass and spin of the particle [13], E is the energy and j the angular momentum.
Note that s is related to j in the rest frame of the particle in exactly the same way in
which m is related to E in that frame [14]. The interpretation of the parameters in the
group element (3.36) follows from our discussion of the Galilei group in section 3.1: the
vector (α,~a) ∈ R3 parametrises spacetime translations, the angle ϕ parametrises spatial
rotations, and ~w is related to the boost velocity via (3.16). The parameters τ and ζ do not
appear to have a clear geometrical significance.

Our strategy for computing these orbits is to start with adjoint orbits of the homoge-
neous group Ĝ0, and to obtain orbits in the full inhomogeneous group by the complexifi-
cation trick described in section 3.3. Thus we start with an element

Q0 = mJ − ~p0 · ~J + E0S (3.37)

– 16 –



J
H
E
P
1
1
(
2
0
0
9
)
0
0
9

in the Lie algebra of the homogeneous group Ĝ0. We already know the effect of conjugating
with an element v = (ϕ, ~w, ζ) ∈ Ĝ0 from our earlier calculation (3.17). In the current
notation the result reads

Adv(Q0) = mJ − ~p · ~J + ES, (3.38)

with

~p = R(ϕ)~p0 −m~v

E = E0 − ~v ·R(ϕ)~p0 +
1
2
m~v2. (3.39)

Physically, the formulae (3.39) give the behaviour or energy and momentum under a boost,
translation and rotation of the reference frame. We will need to know the different kinds
of orbits and their associated centralisers when we study the representation theory of Ĝ.

Trivial orbits arise when we start with a reference element for which both mass and
spin vanish:

Q0(E0) = E0S. (3.40)

The orbits consists of point OE0 = {E0S}; the associated centraliser group is the entire
group i.e. NE0 = Ĝ0. When the mass parameter m 6= 0 i.e.

Q0(E0,m) = E0S +mJ, m 6= 0 (3.41)

the orbit is

OE0,m =
{
mJ − ~p · ~J + ES|E = E0 +

1
2m

~p2

}
, (3.42)

which is a paraboloid opening towards the positive or negative E-axis, depending on the
sign of m. The centraliser group is

NE0,m = {v = (ϕ,~0, ζ) ∈ Ĝ0|ϕ ∈ [0, 2π), ζ ∈ R}. (3.43)

Finally there are non-trivial orbits when the mass is zero, but the momentum non-zero.
The reference element

Q0(~p0) = −~p0 · ~J (3.44)

leads to the orbit

O ~p0 = {ES − ~p · ~J ||~p| = |~p0|, E ∈ R}, (3.45)

which is a cylinder. The centraliser group is

N ~p0 = {v = (0, λ~p0, ζ)|λ, ζ ∈ R}. (3.46)

Moving on to the inhomogeneous group, we write a generic but fixed element in the
Lie algebra ĝ in ’complexified’ language:

Q0 = (m+ θs)J −
(
~p0 + θ~j0

)
~J + (E0 + θj0)S. (3.47)
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In order to compute the effect of conjugating this element with an element in Ĝ

parametrised as in (3.36) we simply ’complexify’ the result (3.39) i.e. we replace ϕ by
ϕ+ αθ, ~p0 by ~p0 + θ~j0 etc. Parametrising the result as

Adg(Q0) = (m′ + θs′)J −
(
~p+ θ~j

)
~J + (E + θj)S (3.48)

we see straight away that m = m′ and s = s′. The formulae ~p and E are simply the terms
of order zero in θ, and therefore given by the expressions in (3.39). In order to find j and
~j we need to compute the terms which are linear in θ. Thus j is the coefficient of θ in

θj0 + ε
(
~w + θ(~a− α~v)

)
·R(ϕ)(1 + εθα)(~p0 + θ~j0) +

1
2

(m+ θs)
(
ε~w + εθ(~a− α~v)

)2
. (3.49)

Multiplying out and simplifying we find

j = j0 − ~v ·R(ϕ)~j0 + ε~a ·R(ϕ)~p0 +
1
2
s~v2 +m~a× ~v. (3.50)

In order to compute ~j, we need the coefficient of θ in

R(ϕ)(1 + εθα) · (~p0 + θ~j0) + (m+ θs)ε
(
~w + θ(~a− α~v)

)
, (3.51)

which is

~j = R(ϕ)~j0 + αεR(ϕ)~p0 +mε
(
~a− α~v

)
− s~v. (3.52)

Having obtained explicit expressions for the adjoint orbits of ĝ it is straightforward to
classify the different types of orbits which arise. This classification essentially follows from
the classification of conjugacy classes in the homogeneous group Ĝ0 in [22] by linearising
and using the ’complexification’ trick to extend to the inhomogeneous situation. These
orbits are already discussed in the literature [8, 15], albeit in a different notation. We
therefore simply list the orbit types in our notation in table 1, giving in each case an
element from which the orbit is obtained by conjugation. The non-trivial orbits are two-
or four-dimensional. The two-dimensional orbits are essentially the adjoint orbits of Ĝ0,
which return here in the inhomogenous part of Ĝ. For us, the two four-dimensional orbits
are most relevant: they correspond to, respectively, massive and massless particles.

3.5 Poisson structure of the orbits

The canonical one-form associated to a coadjoint Ĝ-orbit labelled by one of the reference
elements Q0 in table 1 is of the general form [36]

θQ0 = 〈Q0 , g
−1dg〉. (3.53)

To compute this, we first note the left-invariant Maurer-Cartan one-form on Ĝ0 in our
parametrisation (see also [21], where this was first computed, using different coordinates).
With the notation (3.13), it is

v−1dv = R(−ϕ)d~w · ~J + dϕJ +
(

dζ +
1
2

d~w × ~w

)
S. (3.54)
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Reference element Q0 Generic element Q on orbit Orbit geometry

E0S + j0M E0S + j0M Point
E0S + j0M + sH,

s 6= 0
E0S + jM + sH −~j · ~P

with ~j ∈ R2, j = j0 + 1
2s
~j2

Paraboloid' R2

E0S + j0M −~j0 · ~P ,
~j0 6= ~0

E0S + jM −~j · ~P
with j ∈ R, |~j| = |~j0|

Cylinder ' S1 × R

E0S +mJ + j0M + sH,
m 6= 0

ES +mJ − ~p · ~J + jM −~j · ~P + sH

with ~p,~j ∈ R2,
E = E0 + 1

2m~p
2, j = j0 + 1

m~p ·~j−
s

2m2 ~p
2

Tangent bundle of
paraboloid' R4

E0S−~p0·~J+j0M−~j0·~P +sH,

~p0 6= ~0

ES − ~p · ~J + jM −~j · ~P + sH

with E, j ∈ R, |~p| = |~p0|,
~j · ~p− Es = ~j0 · ~p0 − E0s

Tangent bundle of
cylinder ' S1 × R3

Table 1: Adjoint orbits of the centrally extended Galilei group Ĝ.

For later use we also record the expression for the right-invariant Maurer-Cartan form
on Ĝ0

dvv−1 = (d~w − dϕε~w) · ~J + dϕJ +
(

dζ + 1
2 ~w

2dϕ− 1
2

d~w × ~w

)
S. (3.55)

Next, we again use the ’complexification’ trick to obtain the left-invariant Maurer-Cartan
form on the centrally extended Galilei group Ĝ, which appears in (3.53). In terms of the
parametrisation (3.30)

g = (ϕ+ θα, ~w + θ(~a− α~v), ζ + θτ)

we find

g−1dg =R(−ϕ)d~w · ~J + dϕJ +
(

dζ +
1
2

d~v × ~v
)
S +R(−ϕ)

(
d~a− ~vdα

)
· ~P

+ dαH +
(

dτ +
1
2
~v2dα+

1
2

d(~v · ~a)− ~v · d~a
)
M.

(3.56)

It is explained in [31], that for semi-direct product groups of the type H n h∗, there
is an alternative formula for the symplectic structure on coadjoint orbits, which will be
useful when we study Poisson-Lie group analogues of coadjoint orbits. In this alternative
expression one pairs the inhomogeneous part of a generic point on the orbit with the right-
invariant Maurer-Cartan form (3.55) on the homogeneous part of the group. In our case,
this gives

θ̃Q0 = 〈sH −~j · ~P + jM), dvv−1〉, (3.57)

where we assume the expressions for ~j and j given in table 1 for the generic orbit element
Q on the orbit with reference element Q0.
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We briefly illustrate the formula for the symplectic potential by evaluating it for the
two four-dimensional orbits in table 1. Inserting the element Q0 representing a massive
particle with spin we obtain the symplectic potential for the corresponding orbit:

θE0,j0,m,s = 〈E0S +mJ + j0M + sH , g−1dg〉 = (3.58)

= j0dϕ+ s(dζ +
1
2

d~v × ~v) + E0dα+m

(
dτ +

1
2
~v2dα+

1
2

d(~v · ~a)− ~v · d~a
)
,

which simplifies to

θE0,j0,m,s =
s

2
d~v × ~v +m~v · d(α~v − ~a) + exact term. (3.59)

The associated symplectic form only depends on m and s, and is given by

ωms = dθE0,j0,m,s =
s

2
d(ε~v) ∧ d~v +m~v · d~v ∧ dα−md~v ∧ d~a, (3.60)

where we use the shorthand d~a∧d~b = dai∧dbi. In terms of the momentum vector ~p = −m~v
we recover the fomula given in [13]:

ωm,s =
s

2m2
d(ε~p) ∧ d~p− 1

m
~p · d~p ∧ dα+ d~p ∧ d~a. (3.61)

Computing the symplectic potential via the alternative expression (3.57) we find

θ̃E0,j0,m,s = j0dϕ+ s

(
dζ +

1
2

d~v × ~v
)

+m

(
1
2
~v2dα+ ~a · d~v

)
, (3.62)

which clearly only differs from θms by exact terms, and leads to the same symplectic form.
Proceeding similarly for the four-dimensional orbit corresponding to massless particles,

we compute

θE0,j0,~π0,~j0,s
= 〈E0S − ~π0 · ~J −~j0 · ~P + j0M + sH , g−1dg〉 (3.63)

and find that the symplectic potential is

θE0,j0,~π0,~j0,s
=
(
~j +

s

2
~v
)
· d(ε~v) + d~p · (α~v − ~a) + exact term, (3.64)

where it is understood that ~p and ~j are given by the expressions (3.39) and (3.52). Thus
we obtain the symplectic potential

ω~p0,~j0,s = d~j ∧ d(ε~v) +
s

2
d~v ∧ d(ε~v)− αd~p ∧ d~v − ~v · d~p ∧ dα+ d~p ∧ d~a. (3.65)

4 Galilean gravity in three dimensions as gauge theory of the centrally

extended Galilei group Ĝ

4.1 The Chern-Simons formulation of Galilean gravity

Our approach to formulating a classical and, ultimately, a quantum theory of Galilean
gravity is based on the Chern-Simons formulation of three-dimensional gravity discovered
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in [37] and elaborated in [38] for general relativity in three dimensions. The prescription is,
very simply, to pick a differentiable three-manifold M describing the universe and to write
down the Chern-Simons action for the isometry group of the model spacetime for a given
signature and value of the cosmological constant, using an appropriate inner product on
the Lie algebra. Such an action is, by construction, invariant under orientation-preserving
diffeomorphisms of M. The prescription makes sense for any differentiable three-manifold
M, but for the Hamiltonian quantisation approach we need to assume M to be of topology
R× Σ, where Σ is a two-dimensional manifold, possibly with punctures and a boundary.

For our model of Galilean gravity we use the extended Galilei group Ĝ as a gauge
group, equipped with invariant inner product (2.28). The gauge field of the Chern-Simons
action is then locally given by a one-form on M with values in the Lie algebra ĝ of the
centrally extended Galilei group:

A = ωJ + ωiKi + ηS + eH + eiPi + fM, (4.1)

where ω, ω1, ω2, η, e, e1, e2 and f are ordinary one-forms on M. For later use we split this
into a homogeneous part

a = ωJ + ωiKi + ηS (4.2)

and a normal part

b = eH + eiPi + fM. (4.3)

Then one checks that

1
2

[A,A] = εijωi ∧ ωKj + ω1 ∧ ω2S + (εijei ∧ ω + ωj ∧ e)Pj + ωi ∧ eiM. (4.4)

The curvature

F = dA+
1
2

[A,A] = R+ T (4.5)

is a sum of the homogeneous terms, taking values in ĝ0,

R = dω J + (dη + ω1 ∧ ω2)S + (dωi + εijω ∧ ωj)Ki (4.6)

and the torsion part

T = de H + (df + ωi ∧ ei)M + (dej + ωj ∧ e+ εijei ∧ ω)Pj . (4.7)

Thus the Chern-Simons action for Galilean gravity in 2+1 dimensions takes the form

ICS [A] =
1

16πG

∫
M
〈A ∧ dA〉+

1
3
〈A ∧ [A,A]〉

=
1

16πG

[∫
M
ω ∧ df + f ∧ dω + e ∧ dη + η ∧ de+ εij(ωi ∧ dej + ej ∧ dωi)

+ 2
∫

M
ω ∧ ωi ∧ ei + e ∧ ω1 ∧ ω2

]
, (4.8)
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where G is Newton’s constant in 2+1 dimensions, with physical dimension of inverse mass.
With both the connection A and the curvature being dimensionless, the physical dimension
length2/time of the pairing 〈, 〉 combines with the dimension mass of 1/G to produce the
required dimension of an action.

As expected for gauge groups of the semi-direct product form, with a pairing between
the homogenous and the normal part, this action is equivalent to an action of the BF form,

IBF [A] =
1

8πG

∫
M
〈R ∧ b〉

=
1

8πG

∫
M

dω ∧ f + dη ∧ e+ εijdωi ∧ ej + e ∧ ω1 ∧ ω2 + ω ∧ ωi ∧ ei, (4.9)

with ICS and IBF differing by an integral over an exact form i.e. a boundary term. This
BF-action is closely related to the action of lineal gravity [20]: the two actions are based
on the same curvature R and the same inner product (2.33). The difference is that the
one-form b is a Lagrange multiplier function in the gauge formulation of lineal gravity.

In the absence of a boundary and punctures on Σ the stationary points of the Chern-
Simons action are flat connections i.e. connections for which

F = 0⇔ R = T = 0. (4.10)

These are the vacuum field equations in our Chern-Simons model of classical Galilean
gravity. As pointed out in the introduction, we are not aware of any alternative formu-
lation of diffeomorphism-invariant Galilean gravity in 2+1 dimensions, so in this sense
the equations (4.10) or, better, the action (4.8) can be taken as a definition of classical
(2+1)-dimensional Galilean gravity in the absence of sources.

The interpretation of solutions of (4.10) , i.e. flat Ĝ-connections, in terms of Galilean
spacetimes proceeds along the same lines as the interpretation of flat Poincaré group
connections in terms of Lorentzian spacetimes, see e.g. [39–41]. The flatness condition
means that the gauge field can be written in local patches as A = g−1dg for a Ĝ-valued
function g in a given patch. Parametrising g in the semi-direct product form (3.25)
g = (θT, θ ~X, θτ)(φ, ε~V , ζ) the R3-valued function (T, ~X) provides an embedding of the
patch into our model Galilean space A3 (which we can identify with R3 after a choice of
origin and frame). In this way, a flat Ĝ connection translates into an identifications of open
sets in M with open sets in A3; overlapping open sets are connected by Galilean transfor-
mation. Note that coordinates τ and ζ referring to the central generators play no role in
the geometrical interpretation. At this level, there is remarkably little difference between
relativistic and Galilean gravity. In particular, even though the model space A3 has an
absolute time (up to a global shift), solutions of the Galilean vacuum field equations (4.10)
need not have an absolute time. In particular, there can be time shifts when following the
identifications along non-contractible paths.

A further important consequence of the field equations (4.10) is that a given infinitesi-
mal diffeomorphism can be written as infinitesimal gauge transformation, as in relativistic
3d gravity [38]. This follows from Cartan’s identity applied to the Ĝ-connection A:

LξA = dιξA+ ιξdA = DA(ιξA), (4.11)
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where we used the flatness condition dA = −A∧A to write the infinitesimal diffeomorphism
Lξ as an infinitesimal gauge transformation with generator ιξ(A). Conversely we find, as
in [38], that an infinitesimal local translation can be written as local diffeomorphisms pro-
vided the frame field eH + eiPi is invertible. If that condition is met, local translations do
not lead to (undesirable) gauge invariance in addition to local diffeomorphisms and homo-
geneous Galilei transformations. Questions regarding the role of non-invertible frames and
the relation between global diffeomorphisms and large gauge transformations are difficult,
as they are in the relativistic case, see [42] for a discussion and further references. How-
ever, unlike in the relativistic case, the issue of understanding the difference between the
Chern-Simons and metric formulation does not arise since we do not have a metric theory
of Galilean gravity in three dimensions.

In this paper we will not consider boundary components of Σ, although the boundary
treatment in [43] includes the current situation as a special case. We will, however, couple
particles to the gravitational field. This is done by marking points on the surface Σ and
decorating them with coadjoint orbits of the extended Galilei group, equipped with the
symplectic structures we studied in section 3.5. In order to couple the bulk action to
particles we need to switch notation which makes the splitting M = R×Σ explicit. Referring
the reader to [41, 43] for details, we introduce a coordinate x0 along R and coordinates
x1, x2 on Σ, and split the gauge field into

A = A0dx0 +AΣ, (4.12)

where AΣ is a one form on Σ (which may depend on x0). For simplicity we consider
only one particle, which is modelled by a single puncture of Σ at ~x∗, decorated by a
coadjoint, or equivalently adjoint, orbit. In the parametrisation of adjoint orbits of the
centrally extended Galilei in (3.35), the group element g ∈ Ĝ now becomes a function of
x0. The combined field and particle action, with Q and Q0 defined as in (3.35), takes the
following form:

Iτ [AΣ, A0, g] =
1

8πG

∫
R

dx0

∫
Σ
〈∂0AΣ ∧AΣ〉 −

∫
R

dx0〈Q0 , g
−1∂0g〉 (4.13)

+
∫

R
dx0

∫
Σ
〈A0 ,

1
8πG

FΣ −Qδ(2)(~x− ~x∗)dx1 ∧ dx2〉.

Varying with respect to the Lagrange multiplier A0 we obtain the constraint

FΣ(x) = 8πGQδ(2)(~x− ~x∗)dx1 ∧ dx2. (4.14)

Variation with respect to AΣ gives the evolution equation

∂0AΣ = dΣA0 + [AΣ, A0]. (4.15)

The equation obtained by varying g does not concern us here, but can be found e.g. in [43].
Together with (4.14) this means that the curvature F vanishes except at the ’worldline’

of the puncture, where it is given by the constraint (4.14). In order to interpret the
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constraint geometrically and physically we use the decomposition (4.5) of the curvature
and parametrisation (3.34):

RaΣ = 8πG(mJ + ES − ~p · ~J)δ(2)(~x− ~x∗)dx1 ∧ dx2

T aΣ = 8πG(sM + jH −~j · ~P )δ(2)(~x− ~x∗)dx1 ∧ dx2. (4.16)

The constraints mean that the holonomy around the puncture is related to the Lie algebra
element Q via

h = exp(8πGQ), (4.17)

where we have implicitly chosen a reference point where the holonomy begins and ends. We
will return to the role of this reference point when we discuss the phase space of the theory
further below. Since the element Q = gQ0g

−1 lies in a fixed adjoint orbit, the holonomy
has to lie in a fixed conjugacy class the element exp(Q0). As we saw in section 3.4, the
fixed element Q0 combines the physical attributes of a point particle, like mass and spin.
The holonomy h thus lies in fixed conjugacy class labelled by those physical attributes. As
a preparation for discussing the phase space of the Chern-Simons theory we therefore study
the geometry of conjugacy classes in Ĝ and their parametrisation in terms of physically
meaningful parameters.

4.2 Conjugacy classes of the centrally extended Galilei group

We begin with a brief review of the conjugacy classes in Ĝ0 in our notation. The classifi-
cation of conjugacy classes of Ĝ0 is given in [22], and follows from general formula (3.14).
We would like to interpret this classification in terms of Galilean gravity. The key formula
here is (4.17). Denoting the Ĝ0-valued part of the holonomy h by u we obtain

u = exp(8πG(mJ + ES − ~p · ~J)). (4.18)

In order to understand the relation between the adjoint orbits discussed after (3.38) and
conjugacy classes in Ĝ0, we rescale the physical parameters mass, energy and momentum
which label the adjoint orbits and define

µ = 8πGm, ~π0 = 8πG~p0, ε0 = 8πGE0. (4.19)

Then we define group elements corresponding to the special Lie algebra elements (3.41)
and (3.44) via

u0(ε0) = (0,~0, ε0), u0(µ, ε0) = (µ,~0, ε0), u0(~π0) = (0,−~π0, 0), (4.20)

where we assume µ 6= 0, 2π, ~π0 6= ~0. When parametrising the Ĝ0-conjugacy classes obtained
by conjugating these elements we could either use parameters E, ~p,m in the Lie algebra or
a group parametrisation of the form

u = (µ,−~π, ε). (4.21)
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The two are related via

(µ,−~π, ε) = exp(8πG(mJ − ~p · ~J + ES)). (4.22)

We exhibit the relationship between the two parametrisations for each type of conjugacy
class separately. As we shall see, we can think of ε and ~π as energy and momentum pa-
rameters on the group, and µ as an angular mass coordinate, with range [0, 2π]. The com-
pactification of the range of the mass from an infinite range to a finite interval is a familiar
feature of three-dimensional gravity, in both the Lorentzian and Euclidean regime [44, 45].

For the trivial conjugacy classes consisting of u0(ε0) we have simply ε0 = 8πGE. The
conjugacy class consists of a point Cε0 = {(0,~0, ε0)}; the associated centraliser group is the
entire group i.e. Nε0 = Ĝ0. The conjugacy class containing u0(µ, ε0) can be parametrised as

Cε0,µ =
{

(µ,−~π, ε)|ε = ε0 +
1
4

cot
(µ

2

)
~π2

}
. (4.23)

Provided µ 6= π this a paraboloid opening towards the positive or negative ε-direction,
depending on the sign of µ (non-zero by assumptions). When µ = π we obtain a plane
in the three-dimensional (ε, ~π) space. Pictures of all these conjugacy classes can be found
in [22].

The planar conjugacy class is only one which looks qualitatively different from any of
the adjoint orbits obtained in section 3.4. The planarity means that the energy parameter
ε does not depend on the momentum ~π, as confirmed by the dispersion relation in (4.23).
However, this phenomenon is not as strange as it may at first appear. A similar effect
occurs when one parametrises conjugacy classes in the group SL(2,R) (which is the rel-
ativistic analogue of Ĝ0) in the form exp(εJ0) exp(−~π · ~J), where J0, J1, J2 are the usual
Lorentz generators of SL(2,R). When plotting the conjugacy classes containing the ele-
ment exp(µJ0) in the (ε, ~π) space, they curve up or down, or are horizontal depending on
the value of µ, just like for Ĝ0.

The centraliser group associated to the conjugacy classes (4.23) is the group NE0,m '
U(1)×R already encountered in the discussion of adjoint orbits (3.43). The relation (4.22)
to the Lie algebra parameters is

~π =
sin µ

2
m
2

~p, (ε− ε0) =
sinµ
m

(E − E0). (4.24)

Finally, the conjugacy class containing u0(~π0) is

C~π0
= {(0, ~π, ε)||~π| = |~π0|, ε ∈ R}, (4.25)

which is a cylinder (see again [22] for a picture). The centraliser group is the group
N~p0 ' R2 of (3.46). The relation (4.22) to the Lie algebra parameters is

~π = 8πG~p, (ε− ε0) = 8πG(E − E0). (4.26)

Turning now to the conjugacy classes in the inhomogeneous group Ĝ, we would like to
parametrise the holonomies (4.17) in the form

h = u · r, (4.27)
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where u ∈ Ĝ0 and r ∈ Ĝ is entirely inside the normal abelian subgroup, i.e. can be written

r = (θσ,−θ~ι, θι), σ, ι ∈ R,~ι ∈ R2. (4.28)

The reason for this parametrisation is that the Poisson structure, to be studied further
below, takes a particularly simple form in these coordinates. Note that the factorisation is
similar to the semi-direct product factorisation (3.25), but of the opposite order.

Writing u again as in (4.21) we multiply out to find

h = (µ+ θσ,−(~π + θR(µ)~ι), ε+ θ

(
ι+

1
2
~π ×R(µ)~ι

)
. (4.29)

In order find how the coordinates ι,~ι transform under conjugation (σ is invariant), we
use the following conjugation formula, with the conjugating element g ∈ Ĝ written in the
semi-direct product parametrisation (3.25) i.e. g = xv:

u′r′ = (xv)(ur)(xv)−1

= x(vuv−1 vrv−1)x−1

= (vuv−1) (vu−1v−1 x vuv−1 vrv−1 x−1). (4.30)

or, in a more compact form

u′ = vuv−1, r′ = (u′)−1xu′ x−1 vrv−1, (4.31)

where we have used the commutativity of the inhomogeneous part of Ĝ. Note that the
multiplication of purely inhomogeneous elements, with all parameters proportional to θ,
amounts to the addition of the corresponding parameters.

Using the general formula (4.31) we classify the conjugacy classes of Ĝ. The results
are summarised in table 2, which should be seen as the group analogue of the adjoint orbits
in table 1. The two-dimensional orbits are, in fact, the same as in the Lie algebra case,
except that they now live in the inhomogeneous, abelian part of the group Ĝ. The four-
dimensional conjugacy classes are obtained by exponentiating the four-dimensional adjoint
orbits into the group. Thus their topology is exactly the same as that of the corresponding
adjoint orbits, but their embedding in the group, and hence their parametrisation in terms
of coordinates (4.21) and (4.28) is new. In particular, the ’dispersion relations’ between the
group parameters defining each classes take an unfamiliar form. We list them in each case.
We also give reference group elements from which the conjugacy classes can be obtained
by conjugation. The parameters appearing in them are related to those in the reference
elements of table 1 via (4.20) and

σ = 8πGσ, ~ι0 = 8πG~j, ι0 = 8πGj0. (4.32)
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Reference element Generic element in conjugacy
class

Geometry of
conjugacy class

(0,~0, ε0)(0,~0, θι0) (0,~0, ε0)(0,~0, θι0) Point
(0,~0, ε0)(θσ,~0, θι0)

σ 6= 0
(0,~0, ε0)(θσ,−θ~ι, θι)
with ~ι ∈ R2, ι = ι0 + 1

2σ~ι
2

Paraboloid ' R2

(0,~0, ε0)(0, θ~ι0, θι0)
~ι0 6= ~0

(0,~0, ε0)(0,−θ~ι, θι)
with ι ∈ R, |~ι| = |~ι0|

Cylinder ' S1 × R

(µ,~0, ε0)(θσ,~0, θι0)
µ 6= 0

(µ,−~π, ε)(θσ,−θ~ι, θι)
with ε = ε0 +

1
4

cot µ2~π
2,

ι = ι0 + σ~π2

8 sin2 µ
2

+ 1
2(ε+ cot µ2 )~π ·R(µ)~ι

Tangent bundle of
paraboloid or plane

' R4

(0,−~π0, ε0)(θσ,−θ~ι0, θι0)
~π0 6= ~0

(0,−~π, ε)(θσ,−θ~ι, θι)
with |~π| = |~π0|,
~π ·~ι− εσ = ~π0 ·~ι0 − ε0σ

Tangent bundle of
cylinder ' S1 × R3

Table 2: Conjugacy classes of the centrally extended Galilei group Ĝ.

4.3 The phase space of Galilean 3d gravity and the Poisson-Lie structure of Ĝ

The phase space of Chern-Simons theory with gauge group H on a three-manifold of the
form R×Σ is the space of flat H connections on Σ, equipped with Atiyah-Bott symplectic
structure [46, 47]. This space can be parametrised in terms of holonomies around the
non-contractible loops in Σ, starting and ending at an arbitrarily chosen reference point,
modulo conjugation (the residual gauge freedom at the reference point). For a very brief
review of these facts in the context of 3d gravity we refer the reader to the talks [27, 48],
where additional references can be found. The symplectic structure on the phase space can
be described in a number of ways. The one which is ideally suited to the combinatorial
quantisation approach used in this paper is a description due to Fock and Rosly [23]. The
idea is to work on the extended phase space of all holonomies around non-contractible
loops on Σ (without division by conjugation), and to define a Poisson bracket on the
extended phase space in terms of a classical r-matrix which solves the classical Yang-
Baxter equation and which is compatible with the inner product used in the Chern-Simons
action. The compatibility conditions is simply that the symmetric part of the r-matrix
equals the Casimir element associated with the inner product used in defining the Chern-
Simons action.

The classical r-matrix endows the gauge group with a Poisson structure which is com-
patible with its Lie group structure, i.e. with a Poisson-Lie structure. It turns out that
the Poisson structure on the extended phase space considered by Fock and Rosly can be
described in terms of two standard Poisson structures associated to the Poisson-Lie group
PL: one is called the Heisenberg double (a non-linear version of the cotangent bundle of
PL) and the other is the dual Poisson-Lie structure (a non-linear version of the dual of the
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Lie algebra of PL) [49]. The extended phase space for Chern-Simons theory on R × Σgn,
where Σgn is a surface of genus g with n punctures, can then shown [49] to be isomorphic,
as a Poisson manifold, to a cartesian product of g copies of the Heisenberg double of PL
and a symplectic leaf of the dual Poisson Lie group for every puncture. The Fock-Rosly
Poisson structure on the extended phase space for gauge groups of the semi-direct product
form PL = H n h∗ is studied in detail in [31]. Since the group Ĝ is of this form, all
of the results from [31] can be directly imported. In particular, it is shown in [31] that
the Heisenberg double for groups of the form H n h∗ is simply the cotangent bundle of
H ×H. The dual Poisson structure is more interesting. We now work it out in detail for
the group Ĝ.

The Lie algebra ĝ has the structure of a classical double: it is the direct sum of the Lie
algebras ĝ0 (spanned by J, J1, J2, S) and the abelian Lie algebra spanned by H,P1, P2,M .
These two Lie algebras are in duality via the pairing 〈 , 〉, so we can identify the abelian
Lie algebra with the dual vector space ĝ∗0. Thus ĝ = ĝ0 ⊕ ĝ∗0, and the data we have just
described is precisely that of a Manin triple [50]. It follows that ĝ has, in fact, the structure
of a Lie bi-algebra, which means that it has both commutators and co-commutators, with
a compatibility between the two. The co-commutators can be expressed in terms of the
r-matrix

r = M ⊗ J +H ⊗ S − Pi ⊗ Ji, (4.33)

which pairs generators with their dual, and is clearly compatible with the inner product
〈 , 〉 in the sense of Fock and Rosly: the symmetric part of r is precisely the Casimir (2.30).
On the classical double ĝ = ĝ0 ⊕ ĝ∗0 the Lie algebra structure is that of (2.34), while the
co-commutator is given via

δ(X) = (adX ⊗ 1 + 1⊗ adX)(r), X ∈ ĝ (4.34)

or explicitly

δ(S) = δ(J) = 0, δ(Ji) = 0

δ(M) = 0, δ(H) = −εijPi ⊗ Pj δ(Pi) = εij(M ⊗ Pj − Pj ⊗M). (4.35)

As mentioned above, the r-matrix also gives rise to a Poisson structure on the group Ĝ,
and to associated dual and Heisenberg double Poisson structures. For explicit formulae
in a more general context we refer the reader to [31]. Here we note that the symplectic
leaves of the dual Poisson structure, which are associated to the punctures in the Fock-
Rosly construction, can be mapped to conjugacy classes in the original group Ĝ. The
symplectic potentials for the symplectic form on these leaves can be expressed very conve-
niently in manner which is entirely analogous to the expression (3.57) for the symplectic
potentials on (co)adjoint orbits. The only difference is that the inhomogeneous Lie algebra
element in (3.57) is replaced by its group analogue in the factorisation (4.28), leading to
the symplectic potential

θ̃Ĝ∗ = 〈(σH −~ι · ~P + ιM), dvv−1〉, (4.36)
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where r = (θσ,−θ~ι, θι) is the inhomogeneous part of a group element in the given conjugacy
class. By inserting the parameters σ, ι,~ι for the various conjugacy classes given in table 2
one obtains the symplectic potentials on each of the conjugacy classes listed there. One
can attempt to simplify the resulting expressions using (4.31), but we have not been able
to generate illuminating formulae in this way.

The upshot of the Fock-Rosly construction for Chern-Simons theory with gauge group
Ĝ is thus as follows. For a universe of topology R×Σgn, and assuming for definiteness that
the punctures are decorated with coadjoint orbits Omi,si , i = 1 . . . n, representing particles
with masses mi and spins si, the extended phase space is

P̃ = Ĝ2g × Cµnσn × . . . Cµ1σ1 , (4.37)

where we have written Cµiσi for the conjugacy classes obtained by exponentiating the
orbits Omisi , and assumed that none of the µi equal an integer multiple of 2π. We have
also suppressed the labels E0, j0 and their group analogues ε0, ι0 since they do not affect
the orbit geometry and symplectic structure.

The physical phase space is the quotient

P ={(Ag, Bg, . . . , A1, B1,Mn, . . .M1) ∈ P̃|
[Ag, B−1

g ] . . . [A1, B
−1
1 ]Mn . . .M1 = 1}/conjugation. (4.38)

The non-trivial part of the phase space, apart from the quotient, are the conjugacy classes
in Ĝ. As explained above, these are precisely the symplectic leaves of the dual Poisson-Lie
group Ĝ∗, with symplectic potential (4.36).

5 Towards Galilean quantum gravity in 2+1 dimensions

Our description of classical Galilean gravity in terms of a Chern-Simons theory and a
compatible r-matrix is tailor-made for the application of the combinatorial quantisation
programme summarised in the introduction. As explained there, all aspects of the quan-
tisation - the construction of the Hilbert space, the representation of observables and the
implementation of symmetries on the Hilbert space - are determined by a quantum group
associated to the gauge group used in the Chern-Simons action and the compatible r-
matrix. Since the centrally extended Galilei group with the classical r-matrix (4.33) is an
example of a classical double of the form H n h∗, it follows from the general results of [31]
that the relevant quantum group for Galilean quantum gravity is the quantum double
D(Ĝ0) of the homogeneous part of the centrally extended Galilei group or, in short, the
Galilei double. The focus of this final section is therefore the definition and representation
theory of D(Ĝ0). Since this is closely related to the representation theory of centrally
extended Galilei group Ĝ itself, we begin with a quick review of the latter.

5.1 Representation theory of the centrally extended Galilei group

The particular version of the centrally extended Galilei group studied in this paper is one
of the central extensions of the Galilei group whose representation theory is studied in [3].
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We briefly review the representation theory in our notation, with a particular emphasis
on the fact that, for our version of the extended Galilei group, the representation theory
easily follows from the general representation theory of semi-direct products as developed
in [51] and explained, for example, in [52].

Irreducible representations of semi-direct products of form H n N , where N is an
abelian group, are labelled by H-orbits on the dual of H (the space of characters) and
irreps of centraliser groups of chosen points on those orbits. In the case at hand, where
the semi-direct product is of the particular form Ĝ0 n ĝ∗0, the dual of the abelian group
ĝ∗0 is the Lie algebra ĝ0 itself (viewed as a vector space). The relevant orbits in this case
are therefore the adjoint orbits of Ĝ0 which we listed, together with associated centraliser
groups, in section 3.4.

As for general semi-direct products, we can describe the irreps either in terms of
functions on the homogeneous group Ĝ0 obeying an equivariance condition, or in terms of
functions directly on the orbits (this is rather analogous to the description of the symplectic
leaves in section 3.5 either in terms of the conjugating group element or the orbit itself).
The description in terms of functions on Ĝ0 has a simpler formula for the action of Ĝ
elements, and easily generalises to the quantum group Ĝ. However, in the literature on
the Galilei group, the second view point is commonly used, and we will adopt it in this
paper, too. Since the representation theory is well-documented in the literature [3, 4], we
only sketch the method and then illustrate it with one case in order to establish a clear
dictionary between our notation and that used, for example, in [3]

For definiteness we consider the case of a massive particle with spin. The relevant
adjoint orbit of Ĝ0 is the orbit OE0,m (3.42), which we can parametrise entirely in terms
of the unconstrained momentum vector ~p, with the energy given by

E = E0 +
1

2m
~p2. (5.1)

Homogeneous elements v ∈ Ĝ0 act on the orbit via adjoint action Adv (3.38) and, by a
slight abuse of notation, we write this action as Adv(~p). In other words, it is understood
that E changes under Galilei boosts according to (3.38), which ensure that the energy-
momentum relation (5.1) is maintained. The carrier space of the irreducible representation
is then simply the space L2(R2) of square-integrable functions on the space of momenta.

In order to write down the action of a general element g ∈ Ĝ on states ψ ∈ L2(R2) we
need the reference point Q0(E0,m) (3.41) on the orbit, and we need to pick a map

S : OE0,m → Ĝ0, (5.2)

which associates to a given point Q = mJ − ~p · ~J + ES ∈ OE0,m a Ĝ0-element S(~p) =
v satisfying

Adv(Q0) = Q, (5.3)

i.e. v is an element of the homogeneous Galilei group which rotates/boosts the reference
point Q0 to the given point Q on the adjoint orbit. In the case at hand, we can, for
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example, pick

S(~p) =
(

0,−ε ~p
m
, 0
)
, (5.4)

where we have again used ~p as a coordinate on OE0,m. Then we define the so-called
multiplier function [52]

n : Ĝ0 ×OE0,m → NE0,m, n(v, ~p) = (S(~p))−1v S(Adv−1(~p)). (5.5)

The key properties of this function (both easy to check) are that it takes values in the
centraliser group NE0,m (3.43) associated to the orbit OE0,m, and that it satisfies the
cocycle condition

n(v1, ~p)n(v2,Adv−1
1
~p) = n(v1v2, ~p).

Computing explicitly, we find, for v = (ϕ, ~w, ζ), again with the convention ~v = −ε~w, that

n(v, ~p) =
(
ϕ,~0, ζ +

1
2m

~p× ~v
)
. (5.6)

Then, picking an irrep πj0,s of the centraliser group NE0,m ' U(1) × R, labelled by an
integer j0 and a real number s, the action of an element g = (θα, θ~a, θτ)(ϕ, ~w, ζ) ∈ Ĝ

parametrised in the semi-direct product form (3.25) on a state ψ ∈ L2(R2) is

(ΠE0,m,j0,s(g) ψ) (~p) = πj0,s(n(v, ~p))ei(mτ+~a·~p+Eα) ψ(R(−ϕ)(~p−m~v))

= ei(j0ϕ+s(ζ+ 1
2m

~p×~v)+mτ+~a·~p+α(E0+ 1
2m

~p2) ψ(R(−ϕ)(~p−m~v)). (5.7)

In comparing this expression with representations in the literature readers should be aware
of the different parametrisation (3.30) frequently used for the Galilei group, and the relation
to our semi-direct parametrisation explained after (3.30).

It is not difficult to adapt this example to the representations corresponding to the
cylindrical orbits (3.45). The centraliser group is N~p0 ' R × R, so irreps are labelled by
the orbit label ~p0 and two real numbers s, k characterising an irrep R × R. Finally, note
that irreps of Ĝ corresponding to the vacuum orbit (3.40) are irreps of the group Ĝ0, which
were studied in [53]

5.2 The Galilei double and its irreducible representations

The transition from the inhomogeneous group Ĝ to the quantum double D(Ĝ0) can be
most easily understood at the level of representations [27]. Looking at (5.7) we see that the
translation part (θα, θ~a, θτ) acts on states by multiplication with the function exp(i(αE +
~a · ~p + mτ)) on momentum space ĝ0. In the quantum double, these ’plane waves’ are
replaced by general functions on the group Ĝ0. At the purely algebraic level, this makes no
difference, but the non-abelian nature of Ĝ0 makes a crucial difference for the co-product
structure. The quantum double D(Ĝ0), called Galilei double in this paper, is a non-co-
commutative Hopf algebra, with a non-trivial R-matrix and ribbon element.

As an algebra, the quantum double of a group H is the semi-direct product of the group
algebra of H with algebra of functions on H. It is not trivial to give a mathematically
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rigorous definition of this for the case of a Lie group H, and we refer the reader to [54] where
the quantum double is identified with continuous functions on H ×H. Further details and
the application to three-dimensional quantum gravity are discussed in [55] and [27, 29]. For
a full list of the Hopf algebra structure in our conventions, including antipode, co-unit and
∗-structure, we refer the reader to [31]. Here we adopt a naive approach where elements of
D(H) are described as a tensor product of a group element v ∈ H and a function f on H.
Such elements correspond to singular elements in D(H) in the definition of [54], but they
are convenient for summarising the algebra and co-algebra structure.

(v1 ⊗ f1) • (v2 ⊗ f2) = v1v2 ⊗ (f1 · f2 ◦Adv−1
1

)

∆(v ⊗ f)(u1, u2) = v ⊗ v f(u1u2). (5.8)

The universal R-matrix of D(H) is an element of D(H)⊗D(H); in our singular notation
it is

R =
∫
H
dv(e⊗ δv)⊗ (v ⊗ 1), (5.9)

where e stands for the identity element of H and 1 for the function on H which is
1 everywhere.

The irreps of quantum doubles of a continuous Lie group H, classified in [54], are
labelled by the H-conjugacy classes and irreps of associated centraliser groups. For the
case of the extended homogeneous Galilei group Ĝ0, this is precisely the data we collected
in equations (4.23) to (4.25). The study of the representation theory in [54] is in terms
of equivariant functions on the group, but it is not difficult to express the irreps in terms
of functions on the conjugacy classes and multipliers like (5.6). In fact, this is language
employed for irreps of the double of a finite group in [56].

Consider for definiteness the irreps corresponding to the conjugacy classes Cε0,µ (4.23),
with associated centraliser group NE0,m ' U(1) × R (3.43). Analogously to the adjoint
orbits OE0,m the conjugacy classes can be parametrised by the rescaled momentum vectors
~π, with the rescaled energy determined by

ε = ε0 +
1
4

cot
(µ

2

)
~π2. (5.10)

The carrier space of the irrep is the space of square-integrable functions on the class Cε0,µ.
Using the parametrisation of that orbit in terms of the momentum ~π we could again identify
the carrier space with L2(R2), but this is less convenient in this case. Instead we use the
parametrisation (4.21) for elements u ∈ Cε0,µ, where the relation (5.10) is understood.
With u0(µ, ε0) as in (4.20) we have, from (3.14),

Adv(u0(ε0, µ)) =
(
µ, 1−R(µ)~w, ε0 +

1
2

sin2 µ~w2

)
. (5.11)

The analogue of the map (5.2) is now a map

S : Cε0,µ → Ĝ0, (5.12)

– 32 –



J
H
E
P
1
1
(
2
0
0
9
)
0
0
9

which associates to u ∈ Cε0,µ an element v = S(u) so that

Adv(u0(ε0, µ)) = u. (5.13)

Using (5.11) we can pick, for example,

S(u) = (0, (R(µ)− 1)−1~π, 0), (5.14)

so that the analogue of multiplier function (5.6) is now

n(v, u) =
(
ϕ,~0, ζ +

1
2

(R(µ)− 1)−1~π · ~v
)
. (5.15)

Finally we again pick an irrep πι0σ of the centraliser group NE0,m ' U(1)×R, labelled by
an integer ι0 and a real number σ, and denote the carrier space L2(Cε0,µ) of the associated
irrep of D(Ĝ0) by Vε0,µ,ι0,σ. Then singular elements v⊗f ∈ D(Ĝ0) act on ψ ∈ Vε0,µ,ι0,σ via

(Πε0,µ,ι0,σ(v ⊗ f) ψ) (u) = πι0,σ(n(v, u))f(u) ψ(Adv−1(u))

= ei(ι0ϕ+s(ζ+ 1
2

(R(µ)−1)−1~π·~v)f(u) ψ(Adv−1(u)). (5.16)

Analogous formulae can be derived for the other conjugacy classes. For the trivial
conjugacy classes Cε0 , the centraliser group is the entire group Ĝ0. As in the case of the
centrally extended Galilei group, the irreps of Ĝ0 again appear as special irreps of D(Ĝ0).
The irreps of D(Ĝ0) labelled by conjugacy classes of the form C~π0

correspond to massless
particles, and closely resemble the corresponding irreps of Ĝ.

5.3 Aspects of Galilean quantum gravity in 2+1 dimensions

As reviewed at the beginning of this section, the combinatorial quantisation programme
expresses all aspects of the quantisation of the phase space (4.38) in terms of the repre-
sentation theory of D(Ĝ0). Having studied this representation theory, we end this paper
by highlighting some of the features of the quantum theory which can be derived without
much further calculation. According to [31], the Hilbert space obtained by quantising the
phase space (4.38) for n massive and spinning particles on a surface Σgn of genus g is

H = Inv

(
L2(Ĝ2g

0 ) ⊗
n⊗
i=1

Vε0,i,µi,ι0,i,σi

)
, (5.17)

where Inv means the invariant part of the tensor product under the action of D(Ĝ0). The
general structure of this formula is not difficult to understand. Each Heisenberg double (the
Poisson manifold associated to the handles, which is the cotangent bundle of Ĝ0 × Ĝ0 in
the our case) quantises to L2(Ĝ0× Ĝ0), and each conjugacy class (associated to punctures)
quantises to an irrep of D(Ĝ0). The division by conjugation that takes one from the
extended phase space (4.37) to the physical phase space (4.38) is mirrored in the quantum
theory by the restriction to the invariant part of the tensor product in (5.17). We refer the
reader to [31] for further details, and focus on qualitative aspects here.
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Fusion rules. In order to pick out the invariant part of the tensor product in (5.17) one
needs to be able to decompose tensor products of representations of D(Ĝ0) into irreps.
A general method for doing this in the case of quantum doubles of compact Lie groups
is explained in [57], where it is worked out in detail for D(SU(2)). Extending this to
include the case of D(Ĝ0) is a technical challenge, but certain aspects of the tensor product
decomposition can be read off without much work.

The tensor product decomposition of products like

Vε0,1,µ1,ι0,1,σ1 ⊗ Vε0,2,µ2,ι0,2,σ2 , (5.18)

which occur in (5.17), corresponds physically to a set of fusion rules for particles in Galilean
gravity. They tell us how to ’add’ kinetic attributes like energy and momentum of two
particles. In the representation theory of the Galilei double D(Ĝ0), the conjugacy classes
labelling irreps are combined by multiplying out the group elements contained in them,
and sorting the products into conjugacy classes again. The underlying rule for combining
energy and momentum is thus simply to multiply out the corresponding Ĝ0 elements1.
Thus, with

u1 = (µ1,−~π1, ε1), u2 = (µ2,−~π2, ε2) (5.19)

we have

u1u2 =
(
µ1 + µ2,−(~π1 +R(µ1)~π2), ε1 + ε2 +

1
2
~π1 ×R(µ1)~π2

)
. (5.20)

This simple rule has an interesting consequence. Even if u1 and u2 both belong to conjugacy
classes of the type CE0,µ (4.23) describing massive particles, it is possible for the product
u1u2 to belong to belong to a conjugacy class of the type C~π0

(4.25) describing massless
particles. This happens generically when the sum of the particle’s (rescaled) masses is 2π,
which essentially means that, in physical units, the total mass equals the Planck mass.
Such particles are the non-relativistic analogue of the so-called Gott pairs in relativistic 3d
gravity [58]. However, unlike in the relativistic case there is no condition on the relative
speed of the two particles. As long as the sum of the (rescaled) masses is 2π, the total
energy and momentum is either of the vacuum type or, generically, of the massless type.

Braid interactions. The mapping class group of the spatial surface Σgn acts on the
Hilbert space (5.17). If punctures are present, this means in particular that the braid
group on n strands of Σg acts. The action of the generators of the braid group on the
Hilbert space can be expressed in terms of the R-matrix (5.9) [64], and have a simple
action on the Ĝ0-parts of the holonomies around any two punctures, which can again be
derived from more elementary considerations, as explained in [55]. Assuming that the
two punctures correspond to massive particles we denote their Ĝ0-valued energy-momenta
again by u1 and u2 as in (5.19). In the quantum theory we can describe states of definite
energy and momentum in terms of delta-functions δu1 and δu2 on the conjugacy classes

1This fact can be derived more generally for Chern-Simons descriptions of particles in 2+1 dimensions

from the fact that holonomies get multiplied when the underlying loops are concatenated, see e.g. [55].
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corresponding to the particles’ masses. Either by acting with the R-matrix (5.9) on the
the tensor product δu1 ⊗ δu2 or via the elementary considerations in [55] one finds that the
action of the braid group generator is

(u1, u2) 7→ (u1u2u
−1
1 , u1), (5.21)

which we evaluate, using (5.19):

u1u2u
−1
1 =

(
µ2,−(1−R(µ2))~π1 −R(µ1)~π2, ε2 +

1
2

(1 +R(µ2))~π1 ×R(µ1)~π2 +
1
2

sinµ2~π
2
1

)
.

(5.22)

The braid group action can be related to scattering of two massive particles [29], which
was one of first aspects of 3d quantum gravity to be studied in detail in the limit where one
particle is heavy, and the other can be treated as a test particle moving on the background
spacetime created by the heavy particle [60, 61]. In usual 3d gravity, the scattering can be
understood in terms of the test-particle’s motion on the conical spacetime due to the heavy
particle. The deficit angle of the conical spacetime is proportional to the mass of the heavy
particle in Planck units, and this deficit angle controls the scattering cross section [44, 61].
We can recover aspects of this scattering from the formula (5.22). Taking the first particle
to be the heavy particle, and setting its momentum to zero (so that we are in the heavy
particle’s rest frame), the conjugation action on the second (test) particle’s momentum
is simply

~π2 7→ R(µ1)~π2. (5.23)

This is precisely the distance-independent deflection of the momentum direction by an angle
proportional to the heavy particle’s mass that is characteristic of scattering on a cone. It
would be interesting to use the scattering formalism of [29], using the R-matrix (5.9), to
investigate the non-relativistic scattering in more detail, and to compare with [44, 61].

Non-commutative geometry. The appearance of a non-commutative Lie group as
a momentum space can be related to non-commutativity of spacetime coordinates using
the representation theory of the quantum double [62]. The basic idea is to apply a non-
abelian Fourier transform to switch from the momentum-space wave functions ψ in (5.7) to
position-space representation, with a wavefunction necessarily living on a non-commutative
spacetime and obeying a linear wave equation, see also [64]. Applying the reasoning of [62]
and [64] to the Galilei double, where momenta are coordinates (i.e. functions) on the
group Ĝ0, one expects the relevant non-commutative space algebra in this case to be the
universal enveloping algebra of the Lie algebra ĝ0, with generators now interpreted as
position coordinates X1, X2, a time coordinate T and an additional generator R:

[Xi, R] = 8πG~ εijXj , [X1, X2] = 8πG~ T. (5.24)

Note that the combination ~G has the dimension length2/time, so cannot simply be inter-
preted as a Planck length or Planck time. This dimension is consistent with the interpre-
tation of Xi as positions and of T as time.
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The algebra (5.24) has a a number of interesting features. The operator representing
Galilean time is a central element, and in that sense Galilean time remains absolute in
the non-commutative regime. It is also worth noting that the algebra of spacetime coor-
dinates closes, and is simply the universal enveloping algebra of the Heisenberg algebra.
For fixed time, the non-commutativity of the space coordinates is of Moyal-type, with the
deformation matrix Θij = εij8πG~t proportional to time t (an eigenvalue of T ). Alge-
braically, this is precisely the non-commutative position algebra which was studied in the
context of planar Galilean physics in [9–12]. However, the status here is different. Our
non-commutativity is a quantum gravity effect (proportional to both G and ~) and thus
universal. The non-commutativity of position coordinates of a particle in [9] is related to
the properties of a particle moving in a classical and commutative plane. Presumably the
two effects would have to be somehow combined if such a particle was moving in the non-
commutative spacetime (5.24). It would clearly be interesting to study the spacetime (5.24)
and its physical implications in detail. The role of the generator R (the only compact gen-
erator in ĝ0) is not clear to us. Its appearance reminiscent of the appearance of a fourth
dimension in the study of the differential calculus [63] on the relativistic non-commutative
spacetimes with brackets [Xa, Xb] = εabcX

c.

Acknowledgments

BJS thanks DESY and the Perimeter Institute for hospitality during the time when this
paper was written, and acknowledges a DAAD visiting fellowship for senior academics to
fund the extended stay at DESY. GP acknowledges a PhD Scholarship by the Greek State
Scholarship Foundation (I.K.Y).

References

[1] J. Christian, Exactly soluble sector of quantum gravity, Phy. Rev. D 56 (1997) 4844
[gr-qc/9701013] [SPIRES].

[2] S. Carlip, Quantum gravity in 2+1 dimensions, Cambridge University Press, Cambridge
U.K. (1998).

[3] D.R. Grigore, The projective unitary irreducible representations of the Galilei group in
(1+2)-dimensions, J. Math. Phys. 37 (1996) 460 [hep-th/9312048] [SPIRES].

[4] J. Mund and R. Schrader, Hilbert spaces for nonrelativistic and relativistic ’Free’ Plektons
(Particles with braid group statistics), hep-th/9310054 [SPIRES].

[5] Y. Brihaye, C. Gonera, S. Giller and P. Kosinski, Galilean invariance in (2+1)-dimensions,
hep-th/9503046 [SPIRES].
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